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Abstract.  Current system architectures are typically attributed to the technical leader that holds 
the formal title of “System Architect” and for larger projects there may be a team of system 
architects.  There is no question that this person (or team) is responsible for the development and 
management of the system architecture.  However, a theory in cognitive science known as 
“Distributed Cognition” challenges the notion that a single person or a single team can entirely 
understand the implemented architecture.  This theory can aid in our understanding of system 
architectures and thus improve the probability of a successful implementation of an architecture.  
When applied to the domain of systems engineering, distributed cognition theory suggests that a 
system architecture can only be fully understood through the collective minds of the group that 
develops and implements the architecture.  In fact, the group’s understanding likely diverges from 
the understanding of any single individual.  This helps explain why architectures implemented by a 
large group commonly deviate from the vision held by the lead system architect(s).  After system 
architectures are understood as a distributed “system of knowledge”, a systems engineer can 
actively manage the interfaces between distributed units of knowledge.  The goal is to ensure that 
the collective system of understanding is a healthy system, and thereby increase the probability of 
success that the implemented architecture will meet the needs in the problem space.  This paper 
summarizes current research in distributed cognition and applies that research to form heuristics 
that can be leveraged when developing and implementing an architecture.   

The Theory of Distributed Cognition 
The concepts of distributed cognition must be understood in order to understand how a system 
architecture moves from conception to implementation, and how to best manage that transition.  
Distributed cognition is a theory developed by psychologists studying cognitive science.  Edwin 
Hutchins is credited with developing the theory in the mid-1980’s.  His study matured in 1995 and 
was published in a book entitled “Cognition in the Wild” (Hutchins 1995).  He provided a detailed 
study of the cognition process embodied by an uncoordinated system of Navy ships entering and 
leaving a port.  The captains of the ships acted independently but collectively developed an 
efficient system for port operations.  This paper seeks to apply recent research in distributed 
cognition to the domain of systems engineering.   
 
Psychology and systems engineering are not commonly studied together.  However system 



  

architecture and system design are a product of human thought, so the psychology of the human 
mind is relevant.  In fact, cognitive science quickly converges with concepts in systems 
engineering.  If the isolated knowledge maintained by an individual is understood in terms of its 
interfaces to knowledge held by another individual, then a “system of knowledge” is formed.  As a 
“system” this becomes a problem that can be addressed using familiar methods of systems 
engineering.  

Knowledge System Interfaces Rely on Mental and Physical Artifacts. A person’s 
understanding is affected by both mental and physical artifacts related to knowledge.  In other 
words, an individual’s understanding is affected by their own internal thoughts, and by their 
physical environment that shape and filter their thoughts.  For example, consider a person talking 
on the phone while driving a car filled with three small children that are fighting and screaming.  
The phone provides an interface to share information (mental artifacts).  The driver’s environment 
(physical artifacts) demands multiple cognitive tasks to be performed at the same time, and thus 
reduces the cognitive ability to process the information being presented on the phone.  The driver 
is much less likely to comprehend complex stock market information being discussed by their 
financial advisor on the phone than if they were in a face-to-face meeting at the office that did not 
include the kids.  Physical artifacts can significantly impact the cognition of information. 
 
The same is true at the group level.  A group’s understanding is affected by the quantity and quality 
of individual thought shared between members of the group as well as by the environment that 
affects the perception of the shared information.   
 
A generic representation of a knowledge system is shown in Figure 1.   

 
Figure 1. Generic Knowledge System Diagram 

The distributed elements of cognition together form the collective cognition of the group.  The 
main elements of a knowledge system include: 

• Individual’s local knowledge 
• Individual’s environment that affects (shapes) their cognitive process 
• Interfaces between the distributed knowledge 



 

  

Recent Study of Distributed Cognition.  Recent work in the field of distributed cognition has 
been published by Gureckis and Goldstone at Indiana University (Gureckis and Goldstone 2006).  
The authors do not address system architectures directly, but they embrace distributed cognition 
theory and draw conclusions about conditions under which the behavior of individual agents 
self-organize into adaptive problem-solving group structures.  Through a number of case study 
experiments, these researchers develop a set of lessons learned regarding the behavior of 
group-induced thought.  The experiments addressed three topics of human cognition: Group Path 
Formation, Propagation of Innovations, and Human Foraging Behavior (Gureckis and Goldstone 
2006).  The experiments presented problems to a group of individuals to solve on their own 
computer, but allowed controlled communication with other individuals.  The problem-solving 
performance of the group was measured while each person worked individually.  In each of the 
experiments, the interfaces between individuals were varied in order to observe the effect on the 
group’s collective performance.   
 
Based on these experiments, the researchers develop four lessons learned (a.k.a. heuristics) 
regarding distributed cognition (Gureckis and Goldstone 2006):  

1. People are a large part of people’s environment 
People communicate indirectly by modifying their local environment.  Within the study 
experiments, people followed the behavior of the group even though they were free to act 
on their own.  People naturally took advantage of the behavior of others when devising 
their own actions.  Therefore it can be concluded that people will think more as a group 
when they share more of their environment. 

2. People divide and conquer.  As a group they explore the unknown while exploiting 
the known. 
People take advantage of distributed knowledge to explore and exploit the problem 
domain. While traditional project management relies on delegation of tasks to 
subordinates, this study demonstrated conditions in which a group would spontaneously 
organize into an effective problem solving structure without centralized control.  Therefore 
it can be concluded that there are factors outside of a group’s formal organizational 
structure that contribute to results in the solution domain. 

3. More information isn’t always better 
The group’s productivity is affected by the amount of information an individual has access 
to.  Perhaps counter intuitively, the study demonstrated that less information encouraged 
independence between individual agents and resulted in greatly enhanced group 
performance when addressing a complex problem.  This is because the scarcity of 
information encouraged more individuals to explore the problem space rather than exploit 
existing information.  Therefore it can be concluded that there is a balance between (a) a 
lack of knowledge interfaces between individuals such that their collaboration as a group is 
lacking, and (b) providing too many knowledge interfaces between individuals such that 
the group’s exploratory creativity is stifled.   

4. Groups are best influenced by bottom-up pressures rather than top-down rules 
The study demonstrated that minor changes to the incentives of a few individuals can cause 
radical changes in the group’s problem solving performance.  This leads to the surprising 



  

conclusion that collective behavior is potentially more controllable than isolated individual 
behavior.  The most common form of crowd control is through direct orders or enforced 
laws of behavior.  However it may be more effective to focus on the incentives for a few 
strategically-selected individuals in order to shape the behavior of the group with which 
they interact.  This concept is not new to Chinese history.  The Chinese "bao-jia" 
governance system relies on bottom-up pressures where every 10 households were led by a 
leader known as a "jia zhang" (Zhong 2003).  These local leaders maintained personal 
relationships with their 10 households, and therefore could act as the government's hand in 
influencing politics at a grass-roots level. 

 
A group that is implementing a system architecture can be characterized as a problem-solving 
group structure.  Therefore the lessons learned from these studies form a set of heuristics that can 
be applied to the domain of systems engineering to help us understand how system architectures 
are implemented. 

Applying Distributed Cognition within the  
Domain of Systems Engineering 

If an implemented architecture is understood in the context of distributed cognition, then it can be 
concluded that the architecture is actually a result of the collective understanding of everyone that 
can affect the architecture.  This begs the question, “Who can affect a system architecture?”  
Certainly the system architect, or architecture team, is the immediate conclusion.  A secondary 
conclusion is that any individual that contributes to the design and implementation can affect the 
architecture. Therefore, according to this proposal, a system architecture that has been 
implemented is a product of the distributed cognition of the collective architects, system designers 
and implementers.   
 
To highlight how an architecture can be passively impacted during implementation, consider an 
example electronic system architecture that relies on a shared data bus.  The architect connected all 
systems to this common bus so that data is globally available to all systems, and new or modified 
systems can be achieved without impacting wiring.  However an engineer implementing the 
architecture may not understand this concept and proceed to connect systems to separate busses in 
order to simplify data timing analyses.  The architect is not the only person that affected the 
architecture.  The engineer implementing the architecture can negatively impact the architecture 
by independently making a design decision with good intentions.   
 
The knowledge systems that surround product architectures can occur through unintentional (wild) 
interfaces between knowledge units, or through intentional interfaces (Hutchins 1995).  
Unintentional knowledge systems can lead to unintentional product architectures that do not 
sufficiently address all customer needs.  Therefore it is important to explicitly form the knowledge 
system.  

Is Distributed Cognition Beneficial or Destructive?  An interesting conclusion of distributed 
cognition research is that the collective understanding of the architecture is likely to be different 
from the system architect’s local cognition.  Thus the implemented architecture is likely to be 
different than the architecture conceived by the system architects.  This gap in understanding can 
be considered as beneficial or destructive.  The individuals that work to implement the architecture 



 

  

may have unique expertise and are able to apply that expertise to affect architectural change for its 
benefit.  Conversely, not all individuals may understand the architecture and thereby destructively 
cause the implementation to deviate and lose qualities that are necessary to the solution space.  It is 
a mistake for a system architect to respond to the potentially negative effects of distributed 
cognition by attempting to force everyone into a common understanding through 
micro-management.  This approach limits creativity and original thought through authoritative 
mandates.  Instead the system architect needs to embrace a balanced approach that leverages the 
beneficial contributions that result from collective brain power, while supplementing architectural 
authority as required to facilitate the decision process. 
 
Requirements Decomposition is NOT a Sufficient Knowledge System.  A focus on knowledge 
systems is lacking within current systems engineering practices.  The knowledge system that tends 
to receive the greatest focus is the requirements database.  Multiple levels (or “tiers”) of 
requirements are created and decomposed into lower level detail.  Requirements traceability 
between tiers forms a primary knowledge interface between requirement teams at different 
requirement levels.  The system architects create the top tier(s) of requirements that document the 
customer need.  Then they rely on the engineers implementing the architecture to create lower 
level requirements through requirements decomposition and traceability.  These are good 
practices, but requirements decomposition is not a sufficient knowledge system.  Engineers are 
able to change the architecture by implementing lower level requirements that passively impact 
characteristics of the intended architecture that could not be sufficiently defined in the high level 
requirements.  Requirements databases should be a part of a knowledge system, but additional 
knowledge interfaces should also be employed to enhance the collective architectural 
understanding of the architects and implementation teams.  
 
Recognizing the Cost of a Knowledge System.  Heuristics that apply to product systems are also 
applicable to knowledge systems.  A fifth heuristic that we can add to the four distributed 
cognition heuristics is: 
 

5. System cost increases proportionally to the increase in system complexity 
 
Complex systems are simply expensive, and this is no exception for knowledge systems.  The 
minimal amount of knowledge interfaces required to do a job is the most efficient architecture.  
Each additional person (and thus knowledge interface) above the optimal number of interfaces in a 
knowledge system adds cost.  Tausworthe published a productivity model that demonstrated that 
adding more workers to a project already containing an optimum number of workers will slow 
progress.  Tausworthe’s model also showed that “A team producing at the fastest rate humanly 
possible will spend half of its time coordinating and interfacing.” (Tausworthe 1976).  Fred Brooks 
created a concept known as “Brooks’ Law” that states “Adding manpower to a late software 
project makes it later” (Brooks 1995).  Both Tausworthe and Brooks were modeling the cost of the 
knowledge system interfaces.   
 
This begs the question of how to identify the optimum number of interfaces for a knowledge 
system.  It is not an exact science, but the real point is that it should be carefully and explicitly 
considered during architecture development.  More is not always better.  The optimal knowledge 
system in a solution space contains the minimum amount of people and artifacts necessary to 



  

create the solution.   

Two Knowledge Systems: Problem Space and Solution Space.  A system architecture can be 
characterized by two systems of knowledge: the knowledge system in the problem space and in the 
solution space.  Neither the problem nor the solution are rarely understood by one individual.  Both 
the problem space and solution space are further studied in this paper to identify how architectures 
can be understood and implemented in the context of distributed cognition. 

Distributed Cognition in the Problem Space 
First the problem space is analyzed.  Many proposals have been published for better characterizing 
the problem, or the customer’s need.  The theory of distributed cognition and the lessons learned 
from related studies help answer why some of those proposals are effective in better defining the 
problem space. 
   
Recent work provided by Steven Saunders highlights the fact that the problem space is not well 
characterized within current systems engineering processes (Saunders 2007).  Saunders proposes 
that too much emphasis is placed on requirements management, and the biggest value in systems 
engineering is to sufficiently characterize the problem space so that an appropriate architecture can 
be developed to successfully meet all needs.  To this end Saunders proposes a SCARIT process 
model that places emphasis on the identification of all Stakeholders, their Concerns, and the 
related Architecture in addition to the traditional Requirements, Implementation and Test.  The 
theory of distributed cognition is not part of Saunders’ paper, but it certainly validates the focus on 
the stakeholders and their concerns in the problem space as impacted by their environment.  A 
stakeholder that is a contracts manager is likely to understand most issues as a cost issue.  
Likewise, a product user is likely to understand most issues in the context of how they personally 
use the product, which may not be how others use the product.  A holistic problem space analysis 
can be completed when all stakeholders and their environments are considered together. 
 
Related work was provided by Trainor and Parnell in a paper entitled “Using Stakeholder Analysis 
to Define the Problem in Systems Engineering” (Trainor and Parnell 2007).  The paper does not 
recognize distributed cognition, but instead provides practical techniques for providing a diverse 
perspective of the problem space.  They claim that the initial problem statement is rarely the full 
statement of the problem since the problem space is not normally explored thoroughly.  They 
proceed to recommend methods for exploring the problem space that include one-on-one 
interviews, focus groups, and mass surveys.  In terms of distributed cognition, these represent 
different knowledge interfaces and physical environments that impact the level of comprehension 
during an information exchange.  One-on-one interviews provide the greatest opportunity for 
comprehension, while mass surveys provide the least opportunity for comprehension but provide 
feedback from a large group in a minimal amount of time.  Two knowledge interfaces that were not 
mentioned by Trainor-Parnell are the “documented problem space” and “co-located work 
environment”.  This represents two extremes of comprehension.  A “documented problem space”, 
such as that contained in a Request for Proposal (RFP), provides the least potential for 
comprehension.  A “co-located work environment” provides the greatest potential for 
comprehension.  The investigators of the problem space co-locate with the stakeholders and work 
together to (a) explore and understand the problem and (b) to characterize the environment that 
shapes the stakeholder’s perception. 
 



 

  

An example of a knowledge system for a problem space is shown in Figure 2.  Knowledge 
interfaces discussed by Trainor and Parnell are used in this example.  Example environments that 
can shape an individual’s cognition process are also depicted. 
 

 
Figure 2. Knowledge System Diagram for Example Problem Space 

 
Real-world examples of the knowledge interface extremes help to highlight how the interface and 
environment can impact the comprehension of the problem space.  These two examples involve a 
reference company called “RefCo” that was proposing architectures during the formal 
proposal/bidding process.  However the interfaces in the knowledge systems were very different 
for each example and that made the difference between an architectural failure and a success. 

 
Example 1: ForeignCo was a company located in a country with a different language and culture 
than RefCo.  ForeignCo sent a request for proposal (RFP) to company RefCo, but time zone and 
cultural differences made communication challenging, so there was virtually no personal 
communication to allow RefCo to explore and understand the problem space.  This is an example 
of a “documented problem space”.  RefCo proposed an architecture to meet the needs that they 
understood from the written RFP, but ForeignCo quickly rejected the proposal since it did not 
actually meet the needs in their problem space.  The interfaces between distributed sources of 
knowledge were neglected so the knowledge system in the problem space was unhealthy and led to 
architectural failure. 
 
Example 2: ShareCo invited the same company, RefCo, to temporarily co-locate some of their 
system architects in the office space of ShareCo.  This allowed for day-to-day interactions between 
the two companies so that they could learn from each other.  Neither RefCo or ShareCo were fully 
cognizant of all ShareCo’s needs in the problem space, but the two companies worked together to 
interface their distributed knowledge and increase their collective understanding of the problem 
space.  Following this interaction, both companies worked together to co-author a Request for 



  

Information (RFI) that RefCo formally responded to.  Following the RFI, ShareCo authored an 
RFP for RefCo to respond to.  By this time the problem space was very well understood, and 
RefCo was able to provide a proposed architecture to successfully meet all the needs of ShareCo.  
  
These two examples exemplify the first heuristic “People are a large part of people’s 
environments”.  ShareCo and RefCo shared their working environment to build effective 
interfaces between the distributed knowledge held by each company.  ForeignCo and RefCo didn’t 
share any of their environments, and it resulted in a failed architecture. 

Proposal for Architecting a Knowledge System in the Problem Space 
The five heuristics derived from the study of distributed cognition are helpful in understanding 
knowledge systems in the problem space.  Each heuristic is applied below: 
 
Heuristic #1: People are a large part of people’s environment.  When exploring a problem 
space, the architect will interrogate the known stakeholders using some sort of information 
gathering method (ie. surveys, focus groups, interviews).  If the stakeholders are independent and 
do not share an environment, then the knowledge system may be disjoined or incomplete.  One 
way to address this is to create a shared environment by bringing stakeholders together in a focus 
group session.  This environment fosters knowledge interfaces between the stakeholders who are 
complete strangers.  These interfaces will enhance communication and understanding about a 
problem.  For example, it is more productive to put a driver and the mechanic in the same room to 
assess a problem with a broken car than it is to interview the driver and the mechanic separately.  
When they share an interface, they can more effectively share information that affects what 
questions are asked and answered (forms of information flow across an interface).   
 
According to this heuristic, the cloud in the center of the knowledge system represented in Figure 2 
actually includes a transfer of information between the outlying clouds of interconnected 
knowledge. 
 
Heuristic #2: People divide and conquer.  As a group they explore the unknown while 
exploiting the known.  This heuristic provides insight into how interfaces are made between 
stakeholders in the problem space.  According to this heuristic, if interfaces are provided between 
people, such as by bringing the stakeholders together in a focus group, then the participants will 
naturally divide and conquer the problem space.  People that are motivated to contribute will not 
repeat what someone else already said about the problem.  They exploit the known by indicating 
agreement, but then explore the non-communicated space in search of how they can contribute to 
the problem definition.  If you do not put the stakeholders together, then individually they are more 
likely to state a similar set of obvious facts about the problem since they don’t know what other 
people have contributed.  When separated, the stakeholders are unable to explore and exploit as a 
group. 
  
Heuristic #3: More information isn’t always better.  Consider the case when you interview 
each stakeholder individually and then distribute the transcripts of the interviews between 
everyone before bringing them together in a focus group.  It will provide a lot of information to 
each individual stakeholder and thus create a false sense that the problem space is already fully 
explored.  They are more likely to exploit the vast amount of information cited in the one-on-one 



 

  

interviews rather than explore the unknown.  Drowning people in information about a problem is a 
sure way to stifle the exploration of new information regarding the problem.  A balance is needed 
to foster effective exploration and exploitation. 
 
Heuristic #4: Groups are best influenced by bottom-up pressures rather than top-down 
rules.  The stakeholders in the problem space are much more likely to exchange useful information 
if they understand the incentive for doing so.  Bringing stakeholders together as part of a process 
without clear benefit to the stakeholder will likely result in a minimalist summary of the problem.  
The stakeholder declares “success” because they completed the process, not because they 
completed their exploration and exploitation of the problem space.  If the stakeholder recognizes 
their personal benefit to solving the problem, then they are much more likely to exhaust all 
knowledge that they can contribute in defining the problem.  For example, ask a teenager to 
describe the problem space surrounding their parent’s choice of music on the car radio and they 
may simply utter “it is horrible”.  This does not describe the problem very well.  One way to 
incentivize the teenager is to tell them you will change the music to their liking if they describe 
what’s wrong with the current music.  This may lead the teenager to divulge more information 
describing what they like, such as electric guitars and example bands that they prefer.  It is 
important for the stakeholder to understand their incentive when defining the problem space.   
 
Heuristic #5:  System cost increases proportionally to the increase in system complexity.  
When defining the problem space, the architect should avoid interfacing with as many people as 
possible that are stakeholders in the problem.  Rather, the goal should be to interface with one 
person from each stakeholder group.  If a system architect believes that two people from one 
stakeholder group have unique perspectives, then technically those two people represent two 
different stakeholders even if they belong to the same organization.  Recognizing the subtle 
differences between stakeholder groups will help the architect better understand their interface 
with the overall knowledge system.  The management of redundant knowledge interfaces (two 
people from same stakeholder group) represents unnecessary cost.  The architect must expend the 
time to collect and correlate the redundant input for a stakeholder perspective that is already 
known.  In addition, an unbalanced number of representatives from a stakeholder group can 
misleadingly weigh the problem space.   
 
PROPOSAL: Formally document the knowledge system in the problem space.  The 
knowledge system is the foundation for cognitive understanding in the problem space and needs to 
be documented.  It should include stakeholder identification, their environment, the knowledge 
interface used to gather their input, and a recording of their input.  Many architects document a 
summary of the problem space.  An analysis of the knowledge system validates that the problem 
space was thoroughly searched.  The knowledge system can be reviewed to determine (a) if all 
stakeholders are represented, (b) if a stakeholder is overly weighted by redundant inputs, and (c) if 
the knowledge interface provided a sufficient transfer of information.  Even if a system architect is 
working alone, this methodical approach to documenting the knowledge system may reveal an 
inadequacy that needs to be addressed before exploring the solution space. 
 
A good place to document the knowledge system is in an “Architecture Description Document 
(ADD)”.  If a project doesn’t already have such a document, then it can be created.   This differs 
from a System Description Document since the ADD is limited to only describing the architecture 



  

and does not describe the system implementation details.  The knowledge system should be 
maintained within the ADD during the project lifecycle.  History of changes to the knowledge 
system should also be recorded.  If an architecture is modified to meet a differing stakeholder need, 
then the Architecture Description Document should record those changes and how the knowledge 
system defining the problem space was changed.  For instance, a new stakeholder could have been 
identified in the project, or an existing stakeholder could have changed their mind, or the 
architect’s organization could have directed a change to the architecture to ensure it remains 
aligned with their product roadmap (thereby instantiating themselves as a new stakeholder). 

Distributed Cognition in the Solution Space 
Once the problem space is well understood, the system architect and product implementation 
teams begin working in the solution space.  This represents another knowledge system that needs 
to be managed.  Much work has been published on the need to foster increased collaboration 
between project teams working in the solution space, especially teams that are geographically 
separated.  A system architecture is defined by its interfaces, but the architecture is usually broken 
down at its interfaces when it is divided into organizational teams or outsourced.  This begs the 
question of how the system architecture is understood and managed by the collective set of divided 
teams.  Recent work was provided by Dagli, Miller and Abbott in a paper entitled “An Approach to 
a Network Centric Product Development System” (Dagli, Miller and Abbott 2007).  The paper 
does not recognize distributed cognition, but instead provides practical techniques for managing 
knowledge interfaces in a collaborative development environment.  Their proposal can be 
understood as a three faceted approach: 

1. Provide common group environment

2. Provide effective 

 through instant, continuous audio/visual 
communication via Two-way video over internet protocol (TVIP) 

interfaces between sources of knowledge

3. Affect 

 through use of shared 
information databases 

positive group behaviors

 

 through use of a joint venture business model.  This model 
integrates teams/organizations that are separated by utilizing integrated accounting 
methods, schedules, project management methods, tools and information technology.   

The Dagli-Miller-Abbott proposal is analyzed in the context of distributed cognition to understand 
why it can be effective: 

1. The TVIP initiative seeks to provide a shared working environment.  This is directly 
related to the first heuristic: “People are a large part of people’s environments.”   

2. The shared information databases are related to the second heuristic: “People divide and 
conquer.  As a group they explore the unknown while exploiting the known.”  The shared 
databases provide a record of the “known” which can be exploited rather than re-explored.  
“Wiki” sites are an excellent example of a shared database that leverages the “divide and 
conquer” mentality (Leuf 2008). 

3. The joint venture business model is related to the fourth heuristic: “Groups are best 
influenced by bottom-up pressures rather than top-down rules.”  A joint venture business 
model measures the collective performance of the integrated team through shared 
performance metrics (bottom up pressures).  The businesses are accountable for each other. 



 

  

 
An example of a knowledge system for a solution space is shown in Figure 3.  Typical knowledge 
interfaces are shown along with example environments that can shape an individual’s cognition 
process.   

 
Figure 3. Knowledge System Diagram for Example Solution Space 

 
Real-world examples of the knowledge system in the solution space are provided below to help 
highlight how the knowledge interface and environment can impact the comprehension in the 
solution space.   
 
Example 1:  RefCo created an architecture for a software verification tool that was supposed to 
locate two elements in a source model and then verify that all model elements between those two 
defined points existed in a reference model (strategy of minimal specification).  The verification 
tool was contracted out to ForeignCo, which delivered a verification tool with a different 
architecture than intended.  The tool simply verified that the two start and end model elements 
existed in the reference model instead of verifying that all elements existed between the two 
elements.  The architecture had changed during implementation because the interfaces in the 
knowledge system of the solution space were insufficient.  The architecture was verbalized by 
RefCo over the phone and wasn’t formally documented anywhere.  This was a poor knowledge 
interface, and the working environment was not shared between geographically separated RefCo 
and ForeignCo.  In order to fix the architecture, RefCo formally documented the architecture and 
opened new knowledge interfaces through regular, frequent phone calls and emails.  In addition, 
RefCo brought people from ForeignCo on-site in order to share a working environment.  By fixing 
the knowledge system in the solution space, the architecture for the verification tool was 
successfully implemented. 
 
Example 2: Toyota employs the "Big Room" concept as part of their Toyota Product 
Development System (TPDS).  The "Big Room" concept leverages communication interfaces 
through the worker's environment.  Closed offices and cubicles are removed and replaced with 



  

large open spaces (a.k.a. The Big Room).  The team leaders are located in the center of the room 
and teams are clustered around the leaders.  The walls in the room are used to host visuals that 
support the development process.  The open environment encourages frequent communication and 
fosters an environment of sharing ideas.  By focusing on the knowledge interfaces between people 
and artifacts, the TPDS has achieved a highly efficient development process that is about four 
times shorter than that of a typical North American auto company (Cleveland 2006).   

Proposal for Architecting a Knowledge System in the Solution Space 
The five heuristics derived from the study of distributed cognition are helpful in understanding 
knowledge systems in the solution space.  Each heuristic is applied below: 
 
Heuristic #1: People are a large part of people’s environment.  When working in a solution 
space, the implementation of an architecture is more likely to succeed if the architects share a 
working environment with the team(s) implementing the architecture.  The architects need to stay 
involved. By sharing a working environment, the architect is more likely to be exposed to the same 
pressures that can derail an architecture.  In addition, a shared environment provides an interface 
for architects to be exposed to unique knowledge from experts on the system implementation team 
that could possibly reshape the architecture for the better. 
 
Heuristic #2: People divide and conquer.  As a group they explore the unknown while 
exploiting the known.  Traditional project management relies on delegation of tasks to 
subordinates, but the referenced studies demonstrated that a group would spontaneously organize 
into an effective problem solving structure without centralized control.  In order for this to occur, 
the group needs to know what others are working on so that they can exploit the “known”.  In 
contrast, the more that project teams are segregated from each other, the more that they will 
duplicate work by exploring the same solution space.  In order to facilitate the “divide and 
conquer” mentality, it is crucial to foster healthy communication across teams.  It is a mistake to 
purposefully segregate teams working in the same solution space. 
 
Heuristic #3: More information isn’t always better.  System architects should avoid 
micro-managing the implementation team by providing comprehensive detail on how to 
implement an architecture.  This serves to stifle creativity.  There are many ways a given 
architecture can be implemented, and the team responsible for the implementation needs to be an 
owner of the solution.  The architect(s) become the owner if they dictate an implementation.  Since 
the architect may be held responsible for a failed architecture, it is in their best interest to remain 
involved without suffocating exploration in the solution space.  The architect will benefit if they 
recognize that their implementation team brings unique experience to the table. 
 
Heuristic #4: Groups are best influenced by bottom-up pressures rather than top-down 
rules.  A healthy knowledge system requires good communication interfaces between all people 
working together.  If the performance of a person (or team) is evaluated based solely on their own 
progress, then there are no incentives to build strong communication channels with other people 
(or teams) that depend upon their work.  A top-down pressure model where management directs 
each team to increase communications through regularly scheduled meetings is likely to result in 
the typical meeting where everyone reports their status (perhaps round-robin) while rarely acting 
upon anyone’s status.  According to this heuristic, a bottom-up pressure approach would be much 



 

  

more effective. For example, each individual member (or team) could also be evaluated on how 
well their dependents (people or teams) are able to interface with and/or use their work product.  If 
a hardware engineer’s personal evaluation was dependent upon whether the software team could 
successfully integrate with their hardware, then they would be much more likely to build healthy 
communications with the software team. 
 
Heuristic #5:  System cost increases proportionally to the increase in system complexity.  
When working in the solution space, one should avoid throwing as many people at the solution as 
possible.  The productivity models created by (Tausworthe 1976) and (Brooks 1995) prove that a 
knowledge system that contains more elements than optimal will actually slow down the progress 
of the group due to the burden of coordination and interfacing.  Therefore the goal should be to 
minimize complexity of the knowledge system by minimizing the number of people necessary to 
implement the architecture in the solution space. 
 
PROPOSAL: Formally document the knowledge system in the solution space.  The 
knowledge system in the solution space directly affects the implementation of the architecture and 
therefore needs to be documented.  The documentation of the knowledge system in the solution 
space follows a similar structure as with the problem space.  It must identify the knowledge 
stakeholders, interfaces (requirements documents, weekly telecoms, etc), and the environment that 
affects architectural perception.  The knowledge system in the solution space should be reviewed 
to determine (a) if all stakeholders are represented, (b) if a sufficient knowledge interface is 
provided for each stakeholder, and (c) if the environment needs to be modified to improve the 
efficiency of the knowledge interface.  For instance, if a team is working 80-hour weeks and 
suffers from burn-out, then their comprehension and communication of information will be 
reduced.  If 80-hour work-weeks cannot be avoided, then the architect will likely need to modify 
the knowledge interfaces to ensure the team remains on-track. 
 
The architectural knowledge system in the solution space should be documented together with the 
problem space in the proposed document referred to as the “Architecture Description Document 
(ADD)”.  History of architectural changes attributed to the knowledge system should also be 
recorded.  For example, a change could be attributed to expertise of a system architect or other 
individual on the implementation team that affected positive change during the architecture’s 
implementation.  Alternatively, a negative change could be attributed to a misunderstanding by a 
team member.  Either way, it is important to document the change and why the change was made.  
This artifact will serve as an input to the knowledge system for the current project.  It can also 
serve follow-on projects that desire to fix architectural modifications that were due to a 
misunderstanding within the implementation team. 

Conclusions 
Many system architects may not realize that their architectures are driven by characteristics of 
distributed cognition.  Those architects can improve the success rate of an architectural 
implementation if they actively manage the distributed cognition that occurs in both the problem 
and solution space.  The first step is to recognize that knowledge and understanding exist as 
distributed entities.  Once that is realized, the architect can rely upon familiar systems engineering 
methods to actively manage the distributed knowledge in the “knowledge system.”   
 



  

This paper has already presented five heuristics derived from recent studies in distributed 
cognition that help an architect manage knowledge systems.  In closing, a sixth heuristic is 
presented that helps the system architect to begin thinking about how to construct the knowledge 
systems for their architectures.  This heuristic is credited to David Stanislaw, a Federal Aviation 
Administration (FAA) Designated Engineering Representative (DER): 
 
Heuristic #6: It is better to design how a system will fail as opposed to invent how it will 
perform or operate. 
 
The first point of this heuristic is that the system architect needs to design their knowledge system 
by first identifying the failure conditions.  If the architect doesn’t understand the failure modes, 
then they won’t understand which weaknesses need to be addressed in their knowledge systems. 
 
The second point of the heuristic is that the architect needs to design a knowledge system that 
continues to work when there is a failure.  The world is not a utopia, and systems are almost always 
a compromise.  The architect will not always have the authority to correct a failure.  For example, 
not all stakeholders in the problem space may be willing (or allowed) to actively participate in the 
knowledge system.  In the solution space, bureaucratic pressures could create organizational 
firewalls that severely constrain the knowledge transfer between segregated teams at different 
geographical locations.  If the architect doesn’t have the authority to fix a failure mode, then they 
should design a knowledge system that continues to work as best as it can in the midst of the 
failure.  Good communication and sound architectural understanding rarely happen by accident. 
 
This paper does not present a specific process for managing a knowledge system, nor a specific 
framework for documenting a knowledge system.  Instead, the intent of the paper is to raise 
awareness of distributed cognition within the community of system architects.  Once a system 
architect understands and owns these principles, then they will be better able to manage and 
leverage the collective understanding of the entire implementation team.  This serves to improve 
the success rate for implementing architectures. 
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